Dynamic epigenetic enhancer signatures reveal key transcription factors associated with monocytic differentiation states.
نویسندگان
چکیده
Cellular differentiation is orchestrated by lineage-specific transcription factors and associated with cell type-specific epigenetic signatures. In the present study, we used stage-specific, epigenetic "fingerprints" to deduce key transcriptional regulators of the human monocytic differentiation process. We globally mapped the distribution of epigenetic enhancer marks (histone H3 lysine 4 monomethylation, histone H3 lysine 27 acetylation, and the histone variant H2AZ), describe general properties of marked regions, and show that cell type-specific epigenetic "fingerprints" are correlated with specific, de novo-derived motif signatures at all of the differentiation stages studied (ie, hematopoietic stem cells, monocytes, and macrophages). We validated the novel, de novo-derived, macrophage-specific enhancer signature, which included ETS, CEBP, bZIP, EGR, E-Box and NF-κB motifs, by ChIP sequencing for a subset of motif corresponding transcription factors (PU.1, C/EBPβ, and EGR2), confirming their association with differentiation-associated epigenetic changes. We describe herein the dynamic enhancer landscape of human macrophage differentiation, highlight the power of genome-wide epigenetic profiling studies to reveal novel functional insights, and provide a unique resource for macrophage biologists.
منابع مشابه
Developmental Control of NRAMP1 (SLC11A1) Expression in Professional Phagocytes
NRAMP1 (SLC11A1) is a professional phagocyte membrane importer of divalent metals that contributes to iron recycling at homeostasis and to nutritional immunity against infection. Analyses of data generated by several consortia and additional studies were integrated to hypothesize mechanisms restricting NRAMP1 expression to mature phagocytes. Results from various epigenetic and transcriptomic ap...
متن کاملP-88: Comparing Epigenetic Profile of Oct4 Regulatory Region in Embryonal Carcinoma Cells under Retinoic Acid Induction
Background: Embryonal carcinoma (EC) cells derived from germ cell tumors are valuable tools for investigating differentiation and developmental biology processes in vitro. The advantage of the reproducible and rapid expansion of these cell lines provides a useful alternative to embryos for the study of mammalian cell differentiation. During early stages of cell differentiation, the rate of tran...
متن کاملDifferentiation-specific histone modifications reveal dynamic chromatin interactions and partners for the intestinal transcription factor CDX2.
VIDEO ABSTRACT Cell differentiation requires remodeling of tissue-specific gene loci and activities of key transcriptional regulators, which are recognized for their dominant control over cellular programs. Using epigenomic methods, we characterized enhancer elements specifically modified in differentiating intestinal epithelial cells and found enrichment of transcription factor-binding motifs ...
متن کاملCCAAT/enhancer binding protein alpha is a regulatory switch sufficient for induction of granulocytic development from bipotential myeloid progenitors.
The transcription factor CCAAT/enhancer binding protein alpha (C/EBPalpha) regulates a number of myeloid cell-specific genes. To delineate the role of C/EBPalpha in human granulopoiesis, we studied its expression and function in human primary cells and bipotential (granulocytic/monocytic) myeloid cell lines. We show that the expression of C/EBPalpha initiates with the commitment of multipotenti...
متن کاملHistone demethylase Lsd1 represses hematopoietic stem and progenitor cell signatures during blood cell maturation
Here, we describe that lysine-specific demethylase 1 (Lsd1/KDM1a), which demethylates histone H3 on Lys4 or Lys9 (H3K4/K9), is an indispensible epigenetic governor of hematopoietic differentiation. Integrative genomic analysis, combining global occupancy of Lsd1, genome-wide analysis of its substrates H3K4 monomethylation and dimethylation, and gene expression profiling, reveals that Lsd1 repre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Blood
دوره 119 24 شماره
صفحات -
تاریخ انتشار 2012